
A budget-constrained inverse classification
framework for smooth classifiers

Michael T. Lash∗, Qihang Lin†, W. Nick Street† and Jennifer G. Robinson‡
∗Department of Computer Science, †Department of Management Sciences, ‡Department of Epidemiology

The University of Iowa

Iowa City, Iowa 52242

{michael-lash, qihang-lin, nick-street, jennifer-g-robinson}@uiowa.edu

Abstract—Inverse classification is the process of manipulating
an instance such that it is more likely to conform to a specific
class. Past methods that address such a problem have shortcom-
ings. Greedy methods make changes that are overly radical, often
relying on data that is strictly discrete. Other methods rely on
certain data points, the presence of which cannot be guaranteed.
In this paper we propose a general framework and method that
overcomes these and other limitations. The formulation of our
method can use any differentiable classification function. We
demonstrate the method by using logistic regression and Gaussian
kernel SVMs. We constrain the inverse classification to occur on
features that can actually be changed, each of which incurs an
individual cost. We further subject such changes to fall within
a certain level of cumulative change (budget). Our framework
can also accommodate the estimation of (indirectly changeable)
features whose values change as a consequence of actions taken.
Furthermore, we propose two methods for specifying feature-
value ranges that result in different algorithmic behavior. We
apply our method, and a proposed sensitivity analysis-based
benchmark method, to two freely available datasets: Student
Performance from the UCI Machine Learning Repository and
a real-world cardiovascular disease dataset. The results obtained
demonstrate the validity and benefits of our framework and
method.

Index Terms—Inverse classification, SVM, Logistic regression,
Utility-based learning

I. INTRODUCTION

In many predictive modeling problems, we are concerned

less with the actual prediction, and more with how an indi-

vidual prediction might be changed. Classification problems

such as loan screening and college admission have one output

class that is clearly “desired” by a test case. A person turned

down for a loan would naturally wonder why the decision was

made, and more importantly, what they could do to change

the outcome on the next attempt. We use the term inverse
classification to refer to the process of finding an optimal set

of changes to a test point so as to maximize its predicted

probability of the desired class label.

Problems such as this are prevalent in personalized medicine

settings. Consider, for example, lifestyle choices that minimize

Patient 15’s long-term risk of cardiovascular disease (CVD) –

a randomly selected patient from our experiments in Section

IV. An initial risk prediction, estimated to be 32%, is obtained

using a trained, nonlinear classifier, based on Patient 15’s EHR

data. With Patient 15’s initial risk now known, we wish to work

“backwards” through the classifier to obtain recommendations

that minimize the probability of CVD. We approach the

recommendation step by defining an optimization problem:

what is the smallest (or easiest) set of feasible changes that this

person can make in order to minimize the predicted probability

of developing CVD?

Our first contribution in this work is to define an inverse

classification framework that produces realistic recommenda-

tions. We do so by first partitioning features into two cate-

gories: unchangeable and changeable. It would be impossible

for Patient 15 to reduce her age – this is an unchangeable fea-

ture. Changeable features are further partitioned into directly

and indirectly changeable categories. Directly changeable fea-

tures are immediately actionable – we can recommend that

Patient 15 adjust her diet, for example. Indirectly changeable

features change as a consequence of manipulations to the

directly changeable features, but are themselves not actionable.

Blood glucose changes as Patient 15’s diet is altered, but

cannot be directly altered itself.

In our framework, directly changeable features incur in-

dividual, attribute-wise cost. Cumulative costs across such

features are constrained to be within a budgetary level. These

costs and budget can be specified by either a domain expert,

the individual (e.g., Patient 15), or some combination of the

two.

The second contribution of this work is a method that solves

the inverse classification problem within the specified frame-

work. Our method uses the gradient information of classifiers

to provide recommendations that minimize the probability

of an undesirable class. Using such a method within the

specified framework we are able to provide recommendations

that reduce Patient 15’s probability of CVD from 32% to 3%.

The third contribution we identify is to specify two bound-

setting methods, Elastic and Hard-line, that operate within the

outlined framework allowing inverse classification to occur

more freely or more rigidly, depending upon the problem.

Lastly, we incorporate an indirect feature estimator, that ad-

justs features that change as a consequence of the directly

alterable set of features.

In the remainder of the paper we discuss past work (Section

II), our proposed framework and new method of inverse

classification (Section III), our 16 experiments, conducted

on two freely available datasets using our method and a

sensitivity analysis-based benchmark method (Section IV), and

2017 IEEE International Conference on Data Mining Workshops

2375-9259/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDMW.2017.174

1184

the conclusions we make following these experiments (Section

V).

II. RELATED WORK

Inverse classification can be seen as a form of sensitivity

analysis, the process of examining the input features’ effects

on the target output. While there are many forms of sensitivity

analysis [1], [2], inverse classification is most similar to local

sensitivity analysis and variable perturbation method. Later on

(Section III), we propose a benchmark method that is based

on these.

Past works on inverse classification can be looked at from

three perspectives: the manner in which the algorithm operates,

the type of data the algorithm operates on, and the framework

that guides the process of obtaining recommendations. Al-

gorithm operation, which represents the optimization method

employed, can be broken down into two groups: greedy [3]–

[6] and nongreedy [7], [8]. Greedy methods tend to focus

on extreme objectives, which may not be realistic in the

real world, while nongreedy methods tend to focus on more

moderate objectives. This work uses the latter.

Algorithmic data types, which refers to the type of data

a particular optimization algorithm has the capability of op-

erating on, also fall into two categories: discrete [3]–[5] and

continuous [6]–[8]. Discrete data types lead to coarse-grained

recommendations, while continuous data types provide those

that are more fine-grained. In this work, we focus on the latter,

as precision recommendations are the goal.

Framework refers to the constraints that govern recommen-

dation feasibility. These are manifested in the literature as

either unconstrained [3]–[5] or constrained [6]–[8]. Uncon-

strained problems lead to unrealistic recommendations that

may also be very extreme (e.g., ‘reduce your age by 30

years’). Constrained frameworks lead to more moderate and

realistic recommendations. However, while [7], [8] focus on

moderate objectives, they do not consider (1) what can/cannot

be changed, (2) how hard it might be to change and (3),

cumulatively, how willing someone may be to make changes.

In [6] the authors consider (2), but do not consider (1) and (3).

Additionally, in [7], the formulation of border classification
relies on data points which lie exactly on the separating

hyperplane; there is not guarantee that such points exist in

practice. In this work we propose a framework that considers

(1), (2) and (3).

Inverse classification is a utility-based data mining topic and

is thereby related to the subtopics of strategic [9] and adversar-

ial [10] learning. In these topics it is assumed that a strategic

agent may attempt to game a learned classifier in order to

conform to a desired class. Classifiers are then constructed

taking such behavior into account. Such considerations do not

need to be made in an inverse classification setting, however,

as the goal is to provide explicit instructions to an intelligent

agent (e.g., person) on how they can conform to a desired

class, thereby making such accounts both unnecessary and

undesirable.

III. AN INVERSE CLASSIFICATION FRAMEWORK AND

METHOD

In this section we propose a new inverse classification

framework, and a method that can be used within the frame-

work to solve the problem. We begin by generally discussing

the problem and introducing some notation.

Suppose {(xi, yi)}i=1,2,...,n is a dataset of n, assumed to

have been drawn i.i.d. from some population distribution P ,

where xi ∈ R
p is a column feature vector of length p and

yi ∈ {−1, 1} is the binary label associated with xi for

i = 1, 2, . . . , n. Let X = [x1, ...,xn]T ∈ R
n×p denote the

matrix of training instances with (xi)T ’s being its rows. Any

number of classification models can be trained with this dataset

and used to predict the class of new instances. Unlike typical

classification settings, however, given a new instance x ∈ R
p,

our goal is not only to classify it to the positive or the negative

class but also to recommend an update on x that minimizes

the probability of x being classified as positive. We assume

one unit change in each feature of x will incur a cost and that

only a limited amount of budget B is available. We propose

a numerical framework and algorithm that recommends an

optimal change on x based on a classification model that

incorporates this budgetary constraint.

A. Framework

Suppose we are allowed to change some of the features of

instance x to obtain a new version x′. Also suppose we want

this change to minimize the probability of x′ being classified

as positive. With a classifier f(x), such an x′ can be obtained

by minimizing f(x) over the features of the new version x′.
However, for some physical or economical reasons, we

cannot search for the optimal x over the whole feature space

R
p. In particular, we assume the features {1, 2, . . . , p} can be

partitioned into two subsets C and U . Given a feature vector

x, let xC and xU represent the sub-vectors of x that contain

only changeable and only unchangeable features, respectively.

Since xU cannot be changed, we will minimize f(x) by

optimizing xC . Hence, we represent f(x) as f(xU ,xC) to

distinguish these two sub-vectors. In addition, we assume the

reasonable value of each changeable feature in C must be

within an interval, denoted by [li, ui] for i ∈ C. Moreover, the

costs for increasing and decreasing any feature xi by one unit

are denoted by c+i and c−i , respectively. Give a limited budget

B, the optimal feature design problem for a given instance x
can be formulated as follows:

min
x′C∈R|C|

f(xU ,x
′
C) (1)

s.t.
∑
i∈C

c+i (x
′
i − xi)+ + c−i (x

′
i − xi)− ≤ B

li ≤ x′i ≤ ui for i ∈ C,

where (x)+ = max{0, x} and (x)− = max{0,−x}.
In a more general setting, some of the features in C can

be changed directly by the designer. We call these features

the directly changeable features. However, there are features

1185

that cannot be changed directly. Instead, they change as a

consequence of manipulations made to the directly changeable

features. We call these indirectly changeable features. In Chi

et al. [4] the effects of the directly changeable on the indirectly

changeable features are measured upon completion of the

inverse classification process. Our method incorporates them

as part of the optimization.

To model this phenomenon, we further partition the features

in C into two subsets, D and I , which represent the sets of

directly and indirectly changeable features, respectively. When

we optimize the features, we can only determine the value

for xD and the values of xI will depend on xD and xU .

Therefore, we model the dependency of xI on xD and xU

as xI = H(xD,xU) where the mapping H : R
|D|+|U | →

R
|I| is assumed to be smooth and differentiable. Note that the

mapping H can be trained using the same training instances

for f(x). Furthermore, while the estimates elicited from H
may be noisy, using H is better than allowing the I values

to remain static by definition of what I represents. Therefore,

we represent f(x) as f(xU ,xI ,xD) to distinguish these three

blocks so that the feature optimization problem (1) can be

generalized to

min
x′D∈R|D|

f(xU , H(x′D,xU),x
′
D) (2)

s.t.
∑
i∈D

c+i (x
′
i − xi)+ + c−i (x

′
i − xi)− ≤ B

li ≤ x′i ≤ ui for i ∈ D.

We relate a specific method for solving H(x′D,xU) in

Section IV.A.3. We note that, in practice, D is likely to be

small and that, while U may be large (e.g., pictorial or text-

based features), the efficiency of the optimization won’t be

affected.

1) Time Complexity of H: We acknowledge that the size

of the indirectly changeable feature set I may be large and,

as a result, wish to examine the time complexity associated

with the indirect feature estimator H , which may prove to be

a computational bottleneck.

Let Ha denote the indirect feature estimator for feature

a ∈ I and let ra denote the corresponding time complexity

associated with using Ha; that is, Ha is O(ra). We can then

write the time complexity of H as

R =
∑
a∈I

ra (3)

where R is the time complexity of H . As we can see, R
increases linearly with the size of I (this is by virtue of the

fact that we can estimate each feature in I independently).

However, depending on the choice of Ha, and the size of I ,

this may still prove to be a bottleneck. If this is the case,

the user may need to tailor their selection of Ha, or forgo

estimating certain I features during the inverse classification

process. We empirically show that the time complexity scales

linearly using the H defined in the experiments section (kernel

regression), and include the result in the supplementary ma-

terial that can be found at the publicly accessible repository

github.com/michael-lash/BCIC.

2) Hard-line and elastic bound-setting methods: The con-

straints in (1) and (2) are flexible enough to model different

feature perturbation requirements. Specifically, there are two

ways that the lower and upper bounds can be parameterized,

each resulting in different algorithmic behavior.

The first is rigid with respect to test point x’s original

directly changeable values: if c−i = 0 then li = xi, and if

c+i = 0 then ui = xi where i ∈ D. Such box constraint

parameterization prevents feature i from being increased with-

out cost if c+i = 0, or from being decreased without cost

if c−i = 0, even if doing so would be beneficial according

to the local function space, determined by f(x). This allows

for more control over the recommendations being made to

individuals and is most appropriate when domain experts can

interject their own knowledge in designating which directions

of change are most beneficial. We refer to this as the Hardline

bound-setting method.

The second is less rigid, allowing feature i to increase even

if c+i = 0, or to decrease even if c−i = 0. To obtain such

behavior, if c+i = 0 then ui = max{1, xi} and if c−i = 0 then

li = min{0, xi}. We refer to this as the Elastic bound-setting

method.

In practice, we acknowledge any combination of these

bound-setting methods can be used in a feature-specific man-

ner. Bounds and costs can also be imposed such that individual

costs are incurred differently, depending on whether a specific

feature is increased or decreased.

B. Optimization Method

To solve the inverse classification problem, according to (1)

and (2), we assume that objective function f is differentiable

and its gradient is Lipschitz continuous. Under this assump-

tion, if f is linear, the problem can be solved optimally and

efficiently. If, however, the objective function is highly non-

linear and non-convex, finding the globally optimal solution is

NP-hard, in general. Because we do no wish to make further

assumptions about the linearity of f , we focus on methods that

can solve both these and the harder non-linear, non-convex

class of function.

The available techniques that can be applied to non-convex,

constrained optimization problems (see [11] and extensive

references therein) include: (a) deterministic approaches such

as branch and bound [11], function approximation [12],

cutting plane methods [13], difference of convex functions

methods [14]; and (b) stochastic approaches such as genetic

algorithms [15]. However, these methods are typically slow

and do not scale to large problems1.

Therefore, our list of potential methods is left to include the

projected/proximal gradient method [16], [17] and the zero-

order method [17]. If f(x) is second-order differentiable, the

1This fact is observed first-hand in conducting our own experiments; such
an experience will be further elaborated on in Section IV.

1186

list of potential methods can be extended to include regular-

ized Newton’s method, sequential quadratic programming and

BFGS. Among these methods, the projected gradient method

and the zero-order method can guarantee that the iterative

solution converge to a stationary point at a rate of O(1t). The

remaining methods only guarantee asymptotic convergence,

with no specified convergence rate. Since the zero-order

method is appropriate only when evaluating the gradient of

f is difficult, which is not our case, the appropriate method

to apply with good theoretical guarantees is the projected

gradient method.

1) The Projected Gradient Method: Before we present the

projected gradient method, we need to reformulate (1) or

(2) using the difference of the original features and updated

features as our decision variables. Because space is limited,

we will only conduct the reformulation and presentation of the

algorithm for (2), but the same technique can be applied to (1).

In (2), we define z = x′D − xD and, by changing variables,

(2) can be equivalently written as

min
z∈ΔD

g(z) (4)

where g(z) ≡ f(xU , H(xD + z,xU),xD + z),

ΔD ≡
{
z ∈ R

|D|
∣∣∣∣
∑

i∈D c+i (zi)+ + c−i (zi)− ≤ B,
l′i ≤ zi ≤ u′i for i ∈ D.

}
, (5)

l′i = li − xi and u′i = ui − xi for i ∈ D. The projection

mapping onto the set ΔD is defined as

ProjΔD
(w) ≡ argmin

z∈ΔD

1

2
‖z−w‖2. (6)

When g(z) is differentiable and its gradient ∇g(z) is L-

Lipschitz continuous,2 which is true for our class of function,

the projected gradient method for solving (5) is then given as

Algorithm 1.

Algorithm 1 Projected Gradient Method

Input: z(0) ∈ ΔD, t = 0 and η > 0
1: while Stopping criterion is not satisfied do
2: z(t+1) = ProjΔD

(z(t)) − η∇g(z(t))
3: t← t+ 1
4: end while

Output: z(t)

According to Theorem 3 of [16], when η ≤ 1
L , Algorithm 1

guarantees that z(t) converges to a stationary point (or so-

called KKT point) of (4) at a rate of O(1t), which is the best

convergence for non-convex smooth optimization.

Algorithm 1 requires solving the projection ProjΔD
(w)

at each iteration, which is itself an optimization problem.

An efficient solution scheme for this subproblem is critical

for making Algorithm 1 expeditious. Fortunately, the domain

ΔD 	= ∅ has a specific structure which allow us to solve

2∇g(z) is L-Lipschitz continuous if ‖∇g(z)−∇g(z′)‖ ≤ L‖z− z′‖
for any z, z′ ∈ R

|D|.

ProjΔD
(w) for any w with an efficient subroutine. To see

this, we define

hi(w, λ) =

⎧⎪⎨
⎪⎩

w − λc+i if λ ≤ w
c+i

and w > 0

w + λc−i if λ ≤ − w
c−i

and w < 0

0 otherwise

(7)

for each i ∈ D. The subroutine is given in Algorithm 2.

Algorithm 2 Projection Mapping ProjΔD
(w)

Input: w ∈ R
|D|, {c+i }i∈D, {c−i }i∈D, {l′i}i∈D and {u′i}i∈D

1: A− ← {i|u′i ≤ min(0, wi)}
2: A+ ← {i|max(0, wi) ≤ l′i}
3: zi ← u′i for i ∈ A− and zi ← l′i for i ∈ A+

4: if
∑

i∈D\(A+∪A−) max{min{hi(wi, 0), u
′
i}, l′i} ≤ B −∑

i∈A− u′ic
−
i −

∑
i∈A+

l′ic
+
i then

5: λ← 0
6: else
7: Apply bisection search to find λ ∈ (0,+∞) such that

∑
i∈D\(A+∪A−)

max{min{hi(wi, λ), u
′
i}, l′i}

= B −
∑

i∈A−
u′ic

−
i −

∑
i∈A+

l′ic
+
i

8: end if
9: zi ← max{min{hi(wi, λ), u

′
i}, l′i} for i ∈ D\(A+ ∪A−)

Output: z

The correctness of Algorithm 2 is ensured by the following

proposition whose proof is given in the Appendix.

Proposition 1. If ΔD 	= ∅, the solution z returned by
Algorithm 2 satisfies z = ProjΔD

(w).

C. Representativeness and Support

With our methodology defined, we wish to comment on,

and subsequently quantify, both the representativeness of the

training set from which our f will generalize and the support

underlying the inverse classification of an instance. Therefore,

we first propose δδδ-dissimilarity, related by Definition 1, which

quantifies the dissimilarity between the training set distribution

S and population distribution P using a linear discrepancy

distance measure defined in Johansson et al. [18].

Definition 1. The distribution S of the training set, drawn
from the population distribution P , is said to be δδδ-dissimilar

to that of P if

discH(S,P) ≤ δ. (8)

where discH(S,P) � ‖μ(S) − μ(P)‖ is the discrepancy
distance between two samples [18], or in this case the training
sample and population, we define μ(·) to denote the mean of
a particular distribution, and ‖·‖ is the Euclidean norm.

Using Definition 1, we relate the following proposition.

1187

Proposition 2. As the size of the training set n increases to
infinity, the training set distribution S is asymptotically δ = 0-
dissimilar to that of population distribution P .

The proof of Proposition 2 is in the appendix. We wish to

point out, however, that the variance and shape of P and S
may be quite different despite S being δ = 0-dissimilar to

that of P . Additionally, in practice, the i.i.d. assumption may

not hold (in this work we assume it does). We leave methods,

taking into account such factors, as tangential future work.

We are also concerned with ensuring that optimized in-

stances be near training data. These underlying training data

provide support as to the “trustworthyness” of the recom-

mendations and corresponding probabilities elicited from the

inverse classification process. Therefore, we define (ε, γ)(ε, γ)(ε, γ)-
support, related by Definition 2, which empirically quantifies

the degree to which an inversely classified instance can be

trusted.

Definition 2. Define the (ε, γ)(ε, γ)(ε, γ)-support for a particular test
instance x, to be the following:

- ε is the variance in the predicted probabilities of x’s k
nearest neighbors (from the training data). This measure
provides an assessment as to the stability of the local
probability space surrounding x.

- γ is the number of neighbors that fall within ¯maxDkNN =
1
n

∑n
i=1 maxDist(kNN(xi)) of x, where the function

maxDist(·) returns the maximum distance of training
instance xi’s k nearest neighbors; ¯maxDkNN represents
the average of these maximum distances. By comparing
the γ of x to the average γ of the training set we
can observe whether a particular test instance has more
(larger γ) or less (smaller γ) “support” (relative to the
average from the training data) underlying the predicted
probability.

We explore (ε, γ)-support in the Experiments section.

IV. EXPERIMENTS

In this section we outline our experimental methods and

then apply such methods to two datasets. The first is a bench-

mark dataset from the UCI Machine Learning Repository

1. Partition

 in half

Full dataset
Training Testing

2(b). Split testing

into 10ths:

 -- 1/10th for inv.

 classification.

 -- 9/10ths for

validation.
IC Valid.

2(a). Learn

f H(and)

3(a). Perform IC to

obtain optimized instances.

3(b). Learn
(and)f ' H'

IC*

4. Obtain validation

probabilities

Experiment-reported

probabilities

Fig. 1: Experiment process.

[19] called Student Performance [20]. The second is derived

from ARIC, the Atherosclerosis Risk in Communities study

[21]. We emphasize that both datasets are publicly available.

The latter requires explicit NIH permission3. We provide the

code used in all experiments, and processed Student Perfor-

mance data for public use at github.com/michael-lash/BCIC.

The list of unchangeable, indirectly changeable, and directly

changeable features (and corresponding parameters) for both

datasets is also provided at the above mentioned URL.

We emphasize that parameterization of the inverse classi-

fication framework, including the costs-to-change and assign-

ment of features to the categories of unchangeable, indirectly

changeable and directly changeable, should be guided by

domain experts. As such, our experiments on the ARIC dataset

are guided by a CVD specialist who is a co-author of this

work.

A. Experiment Parameters and Setup

In this section we outline a general process of validating in-

verse classification methods, the two learning algorithms used

to conduct the inverse classification, a method for estimating

indirectly changeable features, and a benchmark optimization

method which we will compare against our gradient-based

method.

1) Process: Our process of making and evaluating rec-

ommendations is based on that proposed by [4]. In our

experiments, we are using data from the past in which known

outcomes are observed. We then make recommendations that

reduce the probability of a negative outcome occurring. But, in

the absence of a time machine, we need a way of validating

whether we would have actually reduced the probability of

such an event occurring. A method that accomplishes this

requires careful segmentation of the data such that none

of the information used to make recommendations is used

in validating the probability of an outcome occurring. The

process, shown in Figure 1, is related as follows:

Step 1: Partition the full dataset into two equal parts: a

training set and a testing set. Data cleansing and preparation

are also performed, including missing value imputation (mean)

and the normalization of data values to be within [0, 1].
Step 2(a): uses the training set to learn a model f . During

this step cross-validation can be used to find the optimal

parameters of f , if necessary. We also perform cross-validation

to obtain optimal parameters in the model xI = H(xD, xU)
for indirectly changeable features.

Step 2(b): Further split the testing set into 10ths. 1/10th is

for performing inverse classification on and the other 9/10ths

are used for validation.

Step 3(a): Perform inverse classification on the heldout

10th of data using f .

Step 3(b): Learn a validation f ′ (and H ′) using the 9/10ths

of heldout testing data.

Step 4: Estimate probabilities for the optimized inverse

classification instances using f ′. These are the probabilities

3Obtained via BioLINCC.

1188

we report in our experiments. Note that we obtain probabilities

for each 1/10th of held out testing data.

By setting up the experiment in this manner we are also

able to be more confident that the recommendations obtained

are not the result of overfitting. Note also that by switching

the roles of training and validation/test sets, the full amount

of data can be used to obtain results.

2) Classification Functions: Our experiments employ the

use of two different learning methods: the linear logistic
regression model and the nonlinear kernel SVM.

Logistic regression is a popular predictive model that works

particularly well when the linear feature independence as-

sumption holds. The model is trained via maximum likelihood

estimation, given by the optimization problem

max
βββ,β0

n∑
i=1

−log(1 + exp(β0 + βββ�xi)) +

n∑
i=1

yi(β0 + βββ�xi)

(9)

Employment of the logistic model in our described inverse

classification framework can be viewed as a basic method

having roots in sensitivity analysis. This is illustrated by

observing the link between coefficient examination as a means

of sensitivity analysis and the employment of our described

gradient-based methodology. Examining the sign and magni-

tude of a coefficient uncovers a particular feature’s bearing –

how positive or how negative – on the problem being modeled.

Taking the gradient of a linear model has the same effect,

thus informing the inverse classification framework which

feature perturbations decrease the objective function value,

with larger coefficients having a larger effect. Integration of

this optimization methodology into the framework allows cost,

budget, etc. to be taken into account as well.

Among classification models, the kernel SVM is one of

the most widely used. Compared to the classical linear SVM,

kernel SVM is more appropriate for data in which two classes

of instances have a nonlinear boundary. A kernel SVM model

can be trained using its dual formulation which is related by

the optimization problem

max
α∈Rn

n∑
i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiαjy
iyjk(xi,xj) (10)

s.t.

n∑
i=1

αiy
i = 0 and 0 ≤ αi ≤ C for i = 1, 2 . . . , n,

where k(x,x′) : R
p × R

p → R is a kernel function that

measures the similarity between any pair of instances x and

x′ in R
p. The commonly used kernel functions include linear

kernels k(x,x′) = xTx′, polynomial kernels k(x,x′) =
(1 + xTx′)d for any positive integer d, and Gaussian kernels

k(x,x′) = exp
(
−‖x−x′‖2

2σ2

)
for σ > 0 where ‖ · ‖ represents

the Euclidean norm in R
p.

Suppose the optimal solution of (10) is α∗ ∈ R
n. An SVM

classifier can be derived based on the function4

f(x) =
n∑

i=1

α∗i y
ik(xi,x), (11)

where the instance xi with α∗i > 0 is called a support vector.

Given a new instance x, the value of f(x) represents how

similar x is to the positive class. A larger value of f(x) means

that x is more likely to be positive.

However, the scores obtained from f(x) do not correspond

to likelihood directly. Therefore, we apply Platt’s Method [22].

Platt’s Method transforms the scores obtained from applying

f(x) to probabilities; specifically, the probability of being

positive. By applying this method we learn a probability space

that is more easily interpretable.

We elect to use the Gaussian kernel SVM for three reasons.

The first is that such a function is highly nonlinear and

complex, giving us the opportunity to explore a more flexible

classifier by which we can assess the effectiveness of our

method. Secondly, the Gaussian kernel can be used to assess

point similarity. This is beneficial in our experiments as one of

our assumptions is that similar points will have similar prob-

abilities associated with them, which isn’t enforced by linear

predictors. Finally, using the σ parameter, we can control the

size of the neighborhood used to assess point similarity. That

is, larger σ values make more distant support vectors appear

more similar to a test point x, which subsequently has the

effect of smoother probability transitions during optimization.

Therefore, our objective function, outlined in (1) and (2),

becomes (??) and (11), logistic and SVM, respectively, with

features segmented into appropriate groups and the indirect

feature estimator, outlined in the next subsection, incorporated.

We explicitly note that, in the case of (11), the minimization

task is to minimize the SVM score. More appropriately, by

applying Platt’s method, we will be minimizing probability

directly, as we are when using (??).

3) Estimating Indirectly Changeable Features: We employ

the use of Kernel Regression [23], [24] as a means of estimat-

ing the indirectly changeable features. In particular, the model

xI = H(xD,xU) used in (2) is

xI =

∑n
i=1 k([x

i
D,xi

U], [xD,xU])x
i
I∑n

i=1 k([x
i
D,xi

U], [xD,xU])
, (12)

where the kernel k(x,x′) = exp
(
−‖x−x′‖2

2σ2

)
(Gaussian) and

the value σ > 0 is selected based on cross-validation. By using

the model in (12) with the Gaussian kernel we are provided

with the added benefit of a point similarity assessment in

making estimations. The model works by considering the

known training set xi
I , that are closer to x, more favorably

than those that are further away. In so doing, (12) obtains an

estimate for xI based on points that are most similar to it.

4In fact, the exact kernel SVM classifier is fb(x) =∑n
i=1 α

∗
i y

ik(xi,x) + b where b is an offset value such that the new
instance x is classified to be positive if fb(x) > 0 and to be negative
otherwise.

1189

4) Methodological Benchmark: In our experiments we wish

to compare our method to that of another. However, to the

best of our knowledge, there exists no past methods, including

those found in Section II, that can be incorporated into our

framework. Therefore we develop a method, based on sensi-

tivity analysis, that we believe represents a reasonable initial

attempt at solving the problem from such a standpoint. Our

proposed benchmark method operates by iteratively perturbing

each feature xDi i ∈ D to the bounds of feasibility (and is

therefore akin to the variable perturbation method of sensitivity

analysis [2]). The objective function is then evaluated. If

this value is found to be better than any of the previous

single-feature perturbations, the perturbation is accepted. After

making single-feature perturbations, if some amount of budget

B remains, then subsequent rounds of perturbation occur

(double-feature perturbation, triple-feature perturbation, etc.).

Here we assert that, because we have chosen two different

indirectly changeable feature estimators, we will effectively be

using two different benchmark methods.

Cumulatively, our experiments will involve two datasets

(ARIC, Student Performance), two classification functions

(logistic, SVM), two optimization methods (PGD, sensitvity

analysis-based), and two bound-setting methods (Hardline and

Elastic) which constitute a total of 16 experiments.

B. Data Description

We validate the effectiveness of our inverse classification

framework on two datasets: Student Performance and ARIC.

Student Performance data consists of individual Portuguese

students enrolled in two different classes. The one used in this

experiment was the Portuguese language class, as it contained

the greater number of instances (n = 649). Each student-

instance has 43 associated features (p = 43). The dependent

variable is whether a student earned a final grade of C or below

(y = 1) or not (y = −1). We discard the two intermediary

grade reports to reflect the long-term goal of earning a better

grade. Therefore, the task is to minimize the probability of

earning a C or below.

The ARIC dataset contains n = 12907 patients for which

we define 110 features (please refer to github.com/michael-
lash/BCIC). As the problem domain is medicine-based, we

consulted an epidemiologist, a coauthor of this paper. We

define y = 1 to be a positive CVD diagnosis, which includes

probable myocardial infarction (MI), definite MI, suspect MI,

definite fatal coronary heart disease (CHD), possible fatal

CHD, and stroke. Patients not having any of these diagnoses

have their CVD class variable encoded as y = −1. Addition-

ally, patients having one of these diagnoses prior to the study

period were excluded from our dataset (giving us the final

n = 12907 patients).

C. Results: Probability Reduction

The results of our 16 experiments are reported in terms of

average probability relative to budget, which can be viewed in

Figure 2, where the subfigures stratify results by dataset and

bound-setting method.

Comprehensively we can see that, in the general case,

all methods except the logistic classifier using PGD on the

Student Performance dataset were successful in reducing the

average probability of a negative outcome. Depending on the

dataset and bound-setting method used, different methods cou-

pled with different classifiers experienced different degrees of

success. This seems to suggest that, as in typical classification

settings, methodological success varies on a dataset-to-dataset

basis.

Interestingly, at a high level, there is no difference between

the results obtained using the Hardline and Elastic bound-

setting methods on Student Performance and only one dis-

tinct difference between the results obtained on ARIC. Here,

logistic regressing using the PGD method is observed to

have distinctly greater average performance using the Elastic

bound-setting method (shown in Figure 2d). Such a result

should be viewed cautiously, however, as the recommendations

obtained may differ, and perhaps even contradict, those our

cardiovascular disease specialist would view as being truly

beneficial. Differences of this nature may be attributable to

possible noise in the ARIC data.

In examining the results obtain on Student Performance,

shown in Figures 2a and 2b, some interesting findings emerge
5. We can see that the best result obtained using the logistic

classifier was through the sensitivity analysis-based method

and the best obtained using the SVM classifier was through

PGD. This may suggest that simpler, linear classifiers may

experience better inverse classification results using simpler

means of optimization and that more complicated, non-linear

classifiers may see better results using those that are more

complicated.

This latter point is somewhat supported by the results

obtained on the ARIC dataset, shown in Figures 2c and 2d. In

examining Figure 2c we can see that PGD outperformed the

sensitivity analysis-based method when using the nonlinear

SVM classifier and that the sensitivity analysis-based method

outperformed PGD when using the linear logistic classifier.

However, in Figure 2d, which represents results obtained using

the Elastic bound-setting method PGD has dominated in the

case of both classifiers. This result seems to suggest that,

regardless of classifier complexity, if there exist optimizations

that benefit from an Elastic setting (recall that no benefits were

found from such a setting on Student Performance), PGD may

dominate (on average).

Unexpectedly, looking at the results obtained for a randomly

selected individual from either dataset, we can see that there

is no difference in probabilistic improvement between the two

bound-setting methods based when using SVM with PGD.

The specific recommendations made to these individuals are

discussed in the next subsection along with recommendations

most commonly made to individuals in each dataset at a budget

of four.

5We wish to point out that the probabilistic estimates obtained from the
two classifiers are disparate, which we believe stems from small amounts of
training data

1190

(a) SP dataset using Hardline Bound-setting. (b) SP dataset using Elastic Bound-setting.

(c) ARIC dataset using Hardline Bound-setting. (d) ARIC dataset using Elastic Bound-setting.

Fig. 2: Average probability vs. budget by dataset (Student Performance or ARIC) and by bound-setting method. Solid lines

represent a result obtained using the logistic model, while dotted lines represent a result obtained using the SVM model. PGD

denotes use of the gradient method, while Sens denotes use of the sensitivity analysis-based method. The cyan dashed line is

a randomly selected individual whose recommendations will be shown and discussed in the next subsection.

(a) Student 135. (b) Patient 15.

Fig. 3: Recommended changes vs. budget for a randomly selected individual from each dataset.

D. Results: Cumulative and Individual Recommendations

In this subsection we briefly relate the most common

changes recommended to individuals in each dataset and then

discuss the definitive recommendations made to two randomly

selected instances.

Table I shows the most common recommendations by raw

count, the highest ranking of which pertain to features relevant

to nearly all individuals (time with friends and eating food, for

instance).

Not all changes could be made to all individuals, how-

Rank Student Perf. ARIC
1 Time w/ friends Eat dark/grain bread
2 Study time Eat fruit
3 Absences Cigs/day
4 Weekday alco. cons. Eat veggies

TABLE I: Most commonly recommended feature changes by

dataset using SVM with the PGD method at a budget of four.

1191

(a) Stud. Perf. Average ε by bud-
get.

(b) Stud. Perf. Average γ by bud-
get. (c) ARIC. Average ε by budget. (d) ARIC. Average γ by budget.

(e) Stud. Perf. Average ε by bud-
get.

(f) Stud. Perf. Average γ by bud-
get. (g) ARIC. Average ε by budget. (h) ARIC. Average γ by budget.

Fig. 4: (ε, γ)-support for Student Performance and ARIC using both the Hardline (4a-4d) and Elastic (4e-4h) bound-setting

methods with k = 10.

ever. For instance, not all individuals drink during the week-

days (Student Performance) and not all individuals smoke

cigarettes(ARIC). Therefore, red shows that when recommen-

dation commonality is normalized by the number of individ-

uals who were engaging in weekday drinking and smoking,

97.97% and 99.98% of the time alterations to such behaviors

were respectively recommended. Such a result shows that

while such risky behaviors are not necessarily common among

all individuals, those who do engage in them are frequently

recommended to make alterations.

Figures 3a and 3b show the changes recommended to a

randomly selected individual from Student Performance and

ARIC, respectively, using SVM with the PGD method.

Contrasting Figure 3a with Figure 3b we can see that, in

the case of the former, a single feature was optimized to

the extent of feasibility before perturbations were made to

another, whereas in the case of the latter, optimization of

several features happened in tandem.

In examining the specific recommendations made to Student

135 in Figure 3a, we can see that first weekday drinking was

curbed, followed by a reduction in school absences, weekend

alcohol consumption, and time out with friends, as the budget

was increased. Last, at the second highest budgetary level,

time spent studying was increased. In the aggregate, it seems

as though risk-related behavioral mitigations were determined

to be optimal for this student.

Looking at the recommendations made to Patient 15 in

Figure 3b we can see that, at low budgetary levels, an increase

in dark or grain breads and a decrease in the number of

cigarettes were recommended. Following these, as the budget

was further incremented, consumption of more fruits and

vegetables, in tandem, was recommended. At a budget of 13

it was also recommended that the patient decrease sodium

intake and then subsequently, at a budget of 18, dietary fiber

intake was increased. Finally, at a budget of 20, an increase in

the consumption of nuts was recommended. Comprehensively,

the recommendations deemed optimal for this patient were

dietary-based, with the exception of a reduction in the number

of cigarettes.

E. Results: (ε, γ)-support

The results in Figure 4 show that our inverse classifications

are well supported in terms of probability space (ε) and

underlying training data (γ) for both Student Performance

and ARIC, up to certain budgetary levels (sans SVM/PGD

in 4h). This suggests that, in future work, a constraint on

the underlying γ-support may be desirable. The results were

obtained by taking the average over the ε, γ values of all

optimized test instances for each budgetary level explored in

past experiments.

V. CONCLUSIONS

In this work we propose and validate a new framework

and method for inverse classification. The framework ensures

that recommendations are realistic by accounting for what can

actually be changed, the cost/effort required to make changes,

the cumulative effort (budget) an individual is willing to put

forth, and the effects that making changes have on features that

are not directly actionable. Additionally, we impose bounds

on the changeable features that further ensure recommen-

dations are realistic, as well as two bound-setting methods

that govern algorithmic recommendation-generating behavior.

Furthermore, our methods are very modular, allowing for the

use of any differentiable classification function (logistic regres-

sion, neural networks, etc.), as well as virtually any estimator

of the indirectly changeable features. We demonstrated the

efficacy of these methods on two freely available datasets as

compared to a baseline method. Future work will focus on

augmenting the framework with additional utility, as well as on

1192

conducting an in-depth analysis exploring situations in which

PGD outperforms sensitivity analysis-based methods.

REFERENCES

[1] S. S. Isukapalli, “Uncertainty analysis of transport-transformation mod-
els,” Ph.D. dissertation, Citeseer, 1999.

[2] J. Yao, “Sensitivity analysis for data mining,” in Fuzzy Information
Processing Society, 2003. NAFIPS 2003. 22nd International Conference
of the North American, July 2003, pp. 272–277.

[3] C. C. Aggarwal, C. Chen, and J. Han, “The inverse classification
problem,” Journal of Computer Science and Technology, vol. 25, no.
May, pp. 458–468, 2010.

[4] C. L. Chi, W. N. Street, J. G. Robinson, and M. A. Crawford,
“Individualized patient-centered lifestyle recommendations: An expert
system for communicating patient specific cardiovascular risk
information and prioritizing lifestyle options,” Journal of Biomedical
Informatics, vol. 45, no. 6, pp. 1164–1174, 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.jbi.2012.07.011

[5] C. Yang, W. N. Street, and J. G. Robinson, “10-year CVD risk
prediction and minimization via inverse classification,” in Proceedings
of the 2nd ACM SIGHIT symposium on International health
informatics - IHI ’12, 2012, pp. 603–610. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2110363.2110430

[6] M. V. Mannino and M. V. Koushik, “The cost minimizing inverse
classification problem : A genetic algorithm approach,” Decision Support
Systems, vol. 29, no. 3, pp. 283–300, 2000.

[7] D. Barbella, S. Benzaid, J. Christensen, B. Jackson, X. V. Qin, and
D. Musicant, “Understanding support vector machine classifications via
a recommender system-like approach,” in Proceedings of the Interna-
tional Conference on Data Mining, 2009, pp. 305–11.

[8] P. C. Pendharkar, “A potential use of data envelopment analysis for the
inverse classification problem,” Omega, vol. 30, no. 3, pp. 243–248,
2002.

[9] F. Boylu, H. Aytug, and G. J. Koehler, “Induction over strategic agents,”
Information Systems Research, vol. 21, no. 1, pp. 170–189, 2010.

[10] D. Lowd and C. Meek, “Adversarial learning,” in Proceedings of
the Eleventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2005, pp. 641–647.

[11] A. Neumaier, “Complete search in continuous global optimization and
constraint satisfaction,” Acta Numerica,, vol. 13, pp. 271–369, 2004.

[12] D. R. Jones, “A taxonomy of global optimization methods based on
response surfaces,” Journal of Global Optimization, vol. 21, no. 4, pp.
345–383, Dec. 2001. [Online]. Available: http://dx.doi.org/10.1023/A:
1012771025575

[13] H. Tuy, T. V. Thieu, and N. Q. Thai, “A conical algorithm for globally
minimizing a concave function over a closed convex set,” Mathematics
of Operations Research, vol. 10, pp. 498–514, 1985.

[14] H. Tuy, “Global minimization of a difference of two convex functions,”
Mathematical Programming Studies, vol. 30, pp. 150–182, 2009.

[15] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning, 1st ed. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1989.

[16] Y. Nesterov, “Gradient methods for minimizing composite objective
function,” Mathematical Programming, Series B, vol. 140, pp. 125–161,
2013.

[17] S. Ghadimi and G. Lan, “Stochastic first- and zeroth-order methods
for nonconvex stochastic programming,” SIAM Journal on Optimization,
vol. 23, pp. 2341–2368, 2013.

[18] F. D. Johansson, U. Shalit, and D. Sontag, “Learning representations
for counterfactual inference,” in Proceedings of the 33rd International
Conference on International Conference on Machine Learning -
Volume 48, ser. ICML’16. JMLR.org, 2016, pp. 3020–3029. [Online].
Available: http://dl.acm.org/citation.cfm?id=3045390.3045708

[19] A. Asuncion and D. Newman, “UCI Machine Learning Repository,”
2007.

[20] P. Cortez and A. M. G. Silva, “Using data mining to predict secondary
school student performance,” in Proceedings of 5th Annual Future
Business Technology Conference. EUROSIS, 2008.

[21] ARIC Investigators and others, “The atherosclerosis risk in commu-
nitities (ARIC) study: design and objectives,” American Journal of
Epidemiology, vol. 129, no. 4, pp. 687–702, 1989.

[22] J. Platt et al., “Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods,” Advances in Large
Margin Classifiers, vol. 10, no. 3, pp. 61–74, 1999.

[23] E. A. Nadaraya, “On estimating regression,” Theory of Probability &
Its Applications, vol. 9, no. 1, pp. 141–142, 1964.

[24] G. S. Watson, “Smooth regression analysis,” The Indian Journal of
Statistics, Series A, vol. 26, no. 4, pp. 359–372, 1964.

APPENDIX

Proof of Proposition 1

Consider the index i ∈ A−. Due to the relationship l′i ≤
zi ≤ u′i ≤ min(0, wi), any feasible value of zi can be at most

u′i while deviating zi from u′i increases the objective value

of (6) and generates cost at a rate of c−i . Hence, the optimal

value for zi must be u′i for each index i ∈ A−. Similarly, the

optimal value for zi must be l′i for this index i ∈ A+.

With the optimal value of zi for i ∈ A+ ∪A− determined,

the optimization problem (6) is reduced to

min
z̃∈ΔD̃

1

2
‖z̃− w̃‖2 (13)

where D̃ = D\(A+ ∪ A−), w̃ = wD̃, i.e., the sub-vector of

w containing the features in D̃, and

ΔD̃ ≡
⎧⎨
⎩z̃ ∈ R

|D̃|
∣∣∣∣∣

∑
i∈D̃ c+i (z̃i)+ + c−i (z̃i)−

≤ B −∑
i∈A− u′ic

−
i −

∑
i∈A+

l′ic
+
i ,

l′i ≤ z̃i ≤ u′i for i ∈ D̃.

⎫⎬
⎭ .

For any λ ≥ 0, let zi = max{min{hi(wi, λ), u
′
i}, l′i} for i ∈

D̃. Using the definition of hi in (7), we can show that the

elements in the set

zi − wi + λc+i ∂(zi)+ + λc−i ∂(zi)−

are all positive only if zi = l′i and the elements in the set

zi − wi + λc+i ∂(zi)+ + λc−i ∂(zi)−

are all negative only if zi = u′i for any i ∈ D̃, where ∂(z)+
and ∂(z)− represent the subdifferentials of the functions (z)+
and (z)−6. This indicates that (zi)i∈D̃ is the optimal solution

of the Lagrangian relaxation problem

min
l′i≤z̃i≤u′i,i∈D̃

1

2
‖z̃− w̃‖2 + λ

⎛
⎝∑

i∈D̃
c+i (z̃i)+ + c−i (z̃i)−

⎞
⎠

with λ being the Lagrangian multiplier. Step 4 and Step 8 in

Algorithm (2) ensure (zi)i∈D̃ is a feasible solution of (13) and

satisfies the complementary slackness conditions with λ. This

implies that (zi)i∈D̃ is the optimal solution of (13) so that

(zi)i∈D is the optimal solution of (6).

Proof of Proposition 2

Assume that the training set is drawn i.i.d. from population

distribution P , having distribution S, where each dimension

is in the range [0, 1], and that the size of the training set n

is large, then by the central limit theorem μ(S)
d−→μ(P) =⇒

discH(S,P) d−→‖000‖ ≤ δ = 0, as desired.

6Note that the subdifferential of a non-smooth function at some point can
be a set.

1193

